HW Two, MTH 418, Spring 2016

Ayman Badawi

QUESTION 1. (i) Given A graph $H=C_{n}$ for some positive integer $n \geq 3$, where $\operatorname{diam}(H)=7$. Find all possible values of n. If H is a bipartite graph, what are all values of n ?
(ii) If C_{n} is not a bipartite graph and $\operatorname{diam}\left(C_{n}\right)=m$ for some odd integer m. Find all possible values of n (write all values of n in terms of m)
(iii) Construct a connected graph with minimum number of vertices such that each vertex is of degree 3 .
(iv) Fix an integer m. Let H be a connected graph with minimum number of vertices, say n, such that each vertex is of degree m. What is the value of n (in terms of m)? Prove your claim (you may use math induction!)
(v) Let H be a graph of order 5 and of size 3 . How many nontrivial spanning subgraphs does H have? (i.e., Note that if $F=H$, then F is a trivial spanning subgraph of H)
(vi) Let H be a graph of order n and of size m. How many nontrivial spanning subgraphs does H have? prove your claim.
(vii) Consider the graph $H=K_{3,4}$ with the associated two sets of vertices A, B such that $|A|=3$ and $|B|=4$. Let D be the induced subgraph of H with vertex set $=A$. Construct the graph joint of E_{2} and D, Does the graph look familiar? Is the graph joint of E_{2} and H a bipartite graph?
(viii) Consider the graph $H=Q_{4}$ with vertex set V. Let $v=0001 \in V$. Let $F_{1}=\{w \in V \mid d(v, w)=2\}$ and $F_{2}=\{w \in V \mid d(v, w)=3\}$. Find F_{1} and F_{2}. Construct the induced subgraph, say M, of H with the vertex set $F_{1} \cup F_{2}$? Can you say something about M ?
(ix) Give me an example of two graphs, each is of order 6, both have the same associated non-increasing sequence on the degrees of the vertices, but one of them is disconnected while the other is connected.

Due date: Thursday at noon March 3,2016 Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

